วันจันทร์ที่ 9 มกราคม พ.ศ. 2555

ความซื่อสัตย์

"...คนที่ไม่มีความสุจริต คนที่ไม่มีความ มั่นคง ชอบแต่มักง่ายไม่มีวันจะ สร้างสรรค์ประโยชน์ส่วนรวมที่สำคัญอันใดได้ ผู้ที่มีความสุจริตและความมุ่งมั่นเท่านั้น จึงจะทำงานสำคัญยิ่งใหญ่ที่เป็นคุณ เป็นประโยชน์แท้จริงได้สำเร็จ..."

วันอาทิตย์ที่ 18 ธันวาคม พ.ศ. 2554

 
เซต (Sets) หมายถึง กลุ่มสิ่งของต่างๆ ไม่ว่าจะเป็น คน สัตว์ สิ่งของ
หรือนิพจน์ทางคณิตศาสตร์ ซึ่งสามารถระบุสมาชิกในกลุ่มได้ และเรียก
สมาชิกในกลุ่มว่า "สมาชิกของเซต"

การเขียนเซต
การเขียนเซตนิยมใช้อักษรตัวใหญ่เขียนแทนชื่อเซต และสามารถเขียนได้ 2แบบ
1. แบบแจกแจงสมาชิกของเซต
ตัวอย่างเช่น A = {1, 2, 3, 4, 5}
B = { a, e, i, o, u}
C = {...,-2,-1,0,1,2,...}
2. แบบบอกเงื่อนไขของสมาชิกในเซต
ตัวอย่างเช่นA = { x | x เป็นจำนวนเต็มบวกที่มีค่าน้อยกว่าหรือเท่ากับ 5}
B = { x | x เป็นสระในภาษาอังกฤษ}
C = {x | x เป็นจำนวนเต็ม}
สัญลักษณ์ที่ใช้แทนเซตของจำนวนต่างๆมีดังนี้
I- แทนเซตของจำนวนเต็มลบQ- แทนเซตของจำนวนตรรกยะที่เป็นลบ
I+ แทนเซตของจำนวนเต็มบวกQ+ แทนเซตของจำนวนตรรกยะที่เป็นบวก
I แทนเซตของจำนวนเต็มQ แทนเซตของจำนวนตรรกยะ
N แทนเซตของจำนวนนับ R แทนเซตของจำนวนจริง
เซตจำกัด
บทนิยามเซตจำกัด คือ เซตที่สามารถระบุจำนวนสมาชิกในเซตได้
ตัวอย่างเช่นA = {1, 2, 3, 4, 5}มีสมาชิก 5 สมาชิก
B = { a, e, i, o, u} มีสมาชิก 5 สมาชิก
เซตอนันต์
เซตอนันต์ คือ เซตที่ไม่ใช่เซตจำกัด หรือเซตที่มีจำนวนสมาชิกมากมายนับไม่ถ้วน
ตัวอย่างเช่่น C = {...,-2,-1,0,1,2,...}
เซตที่เท่ากัน
เซต A และเซต B จะเป็น เซตที่เท่ากัน ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสมาชิกทุกตัวของเซต B เป็นสมาชิกทุกตัวของเซต A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A= B
ตัวอย่างเช่่นA = {1, 2, 3, 4, 5}
B = { x | x เป็นจำนวนนับที่มีค่าน้อยกว่าหรือเท่ากับ 5}
A = B
เซตว่าง
เซตว่าง คือ เซตที่ไม่มีสมาชิก หรือมีจำนวนสมาชิกในเซตเป็นศูนย์ สามารถเขียนแทนได้ด้วยสัญลักษณ์ {} หรือ Ø
ตัวอย่างเช่่นA = {x | x เป็นจำนวนเต็ม และ 1 < x < 2} ∴ A = Ø
B = { x | x เป็นจำนวนเต็มบวก และ x + 1 = 0 } ∴ ฺB = Ø
เนื่องจากเราสามารถบอกจำนวนสมาชิกของเซตว่างได้ ดังนั้น เซตว่างเป็นเซตจำกัด
เอกภพสัมพัทธ์
เอกภพสัมพัทธ์ คือ เซตที่ประกอบด้วยสมาชิกทั้งหมดของสิ่งที่เราต้องการจะศึกษา สามารถเขียนแทนได้ด้วยสัญลักษณ์ u
ตัวอย่างเช่่นถ้าเราจะศึกษาเกี่ยวกับจำนวนเต็ม
U = {...,-2,-1,0,1,2,...}
หรือU = {x | x เป็นจำนวนเต็ม.}
 
สับเซต
บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A ⊂B
ตัวอย่างที่ 1 A = {1, 2, 3}
B = { 1, 2, 3, 4, 5}
A ⊂ B
ตัวอย่างที่ 2 C = { x | x เป็นจำนวนเต็มบวก } = {1,2,3,...}
D = { x | x เป็นจำนวนคี่ } = {...,-3,-1,1,3,...}
C D
ตัวอย่างที่ 3 E = { 0,1,2 }
F = { 2,1,0 }
E ⊂ F และ F ⊂ E
จากตัวอย่างที่ 3 จะเห็นว่า E ⊂ F และ F ⊂ E แล้ว E = F
สับเซตแท้เซต A จะเป็นสับเซตแท้ของเซต B ก็ต่อเมื่อ A ⊂ B และ A ≠ B
จำนวนสับเซตถ้า A เป็นเซตที่มีสมาชิก n สมาชิกแล้ว จำนวนสับเซตของเซต A จะมี 2n เซต และในจำนวนนี้เป็นสับเซตแท้ 2n - 1 เซต

เพาเวอร์เซต
บทนิยาม เพาเวอร์เซตของเซต A คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสับเซตทั้งหมดของเซต A และสามารถเขียนแทนได้ด้วยสัญลักษณ์ P(A)
ตัวอย่างที่ 1 A = Ø
สับเซตทั้งหมดของ A คือ Ø
P(A) = {Ø }
ตัวอย่างที่ 2 B = {1}
สับเซตทั้งหมดของ B คือ Ø, {1}
P(B) = {Ø, {1} }
ตัวอย่างที่ 3 C = {1,2}
สับเซตทั้งหมดของ C คือ Ø, {1} , {2}, {1,2}
P(C) ={Ø, {1} , {2}, {1,2} }



การเขียนแผนภาพแทนเซต
ในการเขียนแผนภาพแทนเซต เราเขียนรูปปิดสี่เหลี่ยมมุมฉากแทนเอกภพสัมพัทธ์ และรูปปิดวงกลม หรือวงรีแทนสับเซตของเอกภพสัมพัทธ์ ดังนี้
เราเรียกแผนภาพดังกล่าวข้างต้นนี้ว่า "แผนภาพเวนน์ - ออยเลอร์" (Venn-Euler Diagram)
ยูเนียน (Union)
บทนิยาม
เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
ตัวอย่างเช่นA ={1,2,3}
B= {3,4,5}
A ∪ B = {1,2,3,4,5}
อินเตอร์เซกชัน (Intersection)
บทนิยาม
เซต A อินเตอร์เซกชันเซต B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ∩ B
ตัวอย่างเช่นA ={1,2,3}
B= {3,4,5}
A ∩ B = {3}
คอมพลีเมนต์ (Complements)
บทนิยาม
ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ U แล้วคอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A'
ตัวอย่างเช่นU = {1,2,3,4,5}
A ={1,2,3}
A' = {4,5}
ผลต่าง (Difference)
บทนิยาม
ถ้าเซต A และ B เป็นเซตใดๆในเอกภพสัมพัทธ์ u เดียวกันแล้ว ผลต่างของเซต A และ B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A แต่ไม่เป็นสมาชิกของเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A - B
ตัวอย่างเช่นA ={1,2,3}
B= {3,4,5}
A - B = {1,2}




• ถ้า A เป็นเซตจำกัดแล้ว สามารถเขียนแทนจำนวนสมาชิกของเซต A ด้วย n(A)
• ถ้า A และ B เป็นเซตจำกัดที่อยู่ในเอกภพสัมพัทธ์ U แล้ว
n(A ∪ B)= n(A) + n(B) - n(A ∩ B)
n(A - B)= n(A) - n(A ∩ B)
n(B - A)= n(B) - n(A ∩ B)
• ถ้า A, B และ C เป็นเซตจำกัดที่อยู่ในเอกภพสัมพัทธ์ U แล้ว
n(A ∪ B ∪ C )= n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩C)